Bastin, J. F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., … & Crowther, T. W. (2019). The global tree restoration potential. Science, 365(6448), 76-79.
Climate change is expected to cause an increase in the global area of drylands of 10–23 percent, depending on dryland subtype, by the end of the twenty-first century, particularly in areas of North and South America, the Mediterranean,The restoration of trees remains among the most effective strategies for climate change mitigation.We mapped the global potential tree coverage to show that 4.4 billion hectares of canopy cover could exist under the current climate. Excluding existing trees and agricultural and urban areas, we found that there is room for an extra 0.9 billion hectares of canopy cover, which could store 205 gigatonnes of carbon in areas that would naturally support woodlands and forests. This highlights global tree restoration as our most effective climate change solution to date. However, climate change will alter this potential tree coverage.We estimate that if we cannot deviate from the current trajectory, the global potential canopy cover may shrink by ~223 million hectares by 2050, with the vast majority of losses occurring in the tropics. Our results highlight the opportunity of climate change mitigation through global tree restoration but also the urgent need for action.